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W I T H  NITROUS OXIDE' 

By Burton D, Fine and Albert Ehns 

SUMMARY 

The yield of n i t r i c  oxide (NO) was measured downstream of r i c h  flames of 
hydrogen (H2) - ni t rous  oxide (N20) - nitrogen (N2), H2 - N20 - carbon dioxide 
(C02), ethylene (C2H4) - N20 - N2, and acetylene (C2H2) - N20 - N2; lean %-N20 
flames with a nitrogen or argon diluent; and very lean H2-NzO flames on a cooled 
porous-plate burner. Results suggest t h a t ,  i n  r i c h  %-N20 flames with an i n e r t  
diluent,  NO was formed by 

N20 + H + NO + NH 

whereas i n  r i c h  hydrocarbon and H2-N20-C02 flames t h e  source of NO was 

N20 + 0 + 2NO 

In r i c h  H z - N ~ O - C O ~  flames, the concentration of oxygen atoms seemed t o  be g rea t ly  
i n  excess of equilibrium. Results a l s o  suggested that t h e  react ion 

N20 + H + N2 + OH 

was unimportant i n  ethylene and acetylene flames. 

Results f o r  lean H2-N20 flames indicated that t h e  thermal decmposition re- 
a c t  ion 

N20 + M-. N2 + 0 + M 

i s  r e l a t i v e l y  slow, even at very l o w  equivalence r a t io s .  Thus, t h e  oxygen atmn 
concentration i n  the flame i s  maintained primarily by equilibrium between oxygen 
a t  oms and molecules. 
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INTRODUCTION 

I f  a flame of hydrogen (Hz) with n i t rous  oxide (N20) is  burned on a cooled 
porous-plate burner, n i t r i c  oxide (NO) i s  found i n  t h e  burned gas j u s t  downstream 
of t h e  flame. The 
amount i s  s m a l l ,  of t h e  order of a few mole percent, but exceeds t h e  t h e o r e t i c a l  
amount f o r  complete equilibrium by many orders  of magnitude. Lean of s to ich io-  
metric, t h e  amount of NO i n  t h e  burned gas increases  slowly with d is tance  because 
of oxidation of t h e  excess NzO, which proceeds, i n  par t ,  by t h e  reac t ion  

This i s  t r u e  f o r  bo th  r i c h  and lean  flames ( r e f s .  1 and 2 ) .  

N20 + 0 + 2NO (1) 

Downstream of fue l - r i ch  flames, on t h e  other  hand, t h e  concentration of NO 
should decrease with d is tance  because of reac t ions  with reducing species  and 
thermal decomposition. 
t h e i r  ac t iva t ion  energies as w e l l  are ,  however, r e l a t i v e l y  high (refs. 3 and 4 ) .  
Thus, it might be expected t h a t ,  over l a r g e  ranges of experimental conditions,  
t h e  amount of NO produced would be  s u f f i c i e n t l y  constant with d is tance  that t h e  
y i e ld  of NO from a given flame could be  character ized by a s i n g l e  value and de- 
termined by a very few sampling measurements. 
r e l a t e  t h e  NO y i e ld  da ta  with i n i t i a l  and burned gas conditions i n  order t o  ob- 
t a i n  information regarding chemical reac t ions  tak ing  place within t h e  flame. 

The orders of such reac t ions  with respect t o  NO and 

It might then be poss ib le  t o  cor- 

I n  a previous study ( re f .  5), some NO y i e ld  values were reported f o r  r i c h  
and lean H2-N20-diluent flames. Results r i c h  of s toichiometr ic  suggested t h a t  
NO w a s  formed by t h e  reac t ion  

N20 + H -+ NO + NH (2 1 
s ince  the NO y ie ld  was found t o  be roughly independent of i n i t i a l  equivalence 
rat io. Results f o r  fue l - lean  flames indica ted  propor t iona l i ty  between t h e  NO 
y i e ld  and t h e  concentration of oxygen atoms (0)  i n  t h e  burned gas, but l i t t l e  
e l s e  i n  t h e  way of de t a i l ed  information was deduced. 

I n  t h e  present study, t h e  NO y i e ld  measurements have been extended t o  i n -  
clude r i c h  ethylene (CzHq) - N20 and acetylene (CzH2)  - Nz0 flames with ni t rogen 
(N2)  as a d i luent  a t  various pressures,  burned gas temperatures, and i n i t i a l  
equivalence r a t i o s .  
show the  e f f e c t s  of COz di luent  f o r  r i c h  flames and of a l a rge  i n i t i a l  excess 
of NZO f o r  lean flames ( i n i t L a l  equivalence r a t i o s  near 0 .2) .  
have been obtained f o r  lean  flames with argon d i luent .  On t h e  b a s i s  of t hese  new 
data,  the  in t e rp re t a t ion  offered i n  t h e  previous report  ( r e f .  5)  has been re-  
evaluated. 

Additional da ta  f o r  H2 flames have been obtained. These 

Also, more da ta  

‘Equivalence r a t i o  i s  defined as tile measured mole r a t i o  nfuel/nNzO d i -  

vided by t h e  mole r a t i o  f o r  a stoichiometr ic  mixture. As used here, it does not 
r e t a i n  i t s  usual  meaning en t i re ly ,  s ince  some of t h e  N20 present i s  removed by 
thermal decomposition and some of t h e  i n i t i a l  mixtures contained added a i r .  
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Apparatus and F'rocedure 

A cooled porous-plate burner, 4 inches i n  diameter, was mounted i n  t h e  base 
of a low-pressure chamber, as described previously (ref .  5). 
burned gas was done, as before, with quartz microprobes. The sampling zone ex- 
tended downstream about 1 centimeter from t h e  hot edge of t h e  flame and was 
always isothermal within about 10' K. For r ich flames t h e  NO yie ld  was defined 
as t h e  average of up t o  four  determinations through t h e  sampling zone, 
flames, t h e  RO yie ld  was taken t o  be t h e  amount found about 1 centimeter down- 
stream of t h e  flame, at  which posit ion most of t h e  lV20 that survived passage 
through t h e  flame had been consumed. 

Sampling of t h e  

For lean 

Wherever possible, temperatures i n  t h e  burned gas were determined with 
si l ica-coated platinum - p la t  inum-13-percent-rhodium thermocouples, which were 
made by butt-welding wires 0.001 inch i n  diameter. All thermocouple readings 
were corrected fo r  radiation by the  procedure given i n  reference 6. For many 
C2H2-,N20-N2 flames, however, t he  burned gas temperatures were considerably higher 
than 2000' K, under which conditions t h e  thermocouples fa i led .  
it was necessary t o  estimate temperatures by a d i f fe ren t  method. 

For such flames, 

Reference 6 reports that t h e  temperature dependence of t h e  burning ve loc i ty  
of C z H q - a i r  flames on cooled porous-plate burners was about t h e  same as f o r  cor- 
responding C2H2-a i r  flames. Therefore, it was assumed that a similar equality 
of temperature dependence held between C2R4-N2O-R2 and C2H2-N20-N2 flames t h a t  
contained similar proportions of diluent.  Firs t ,  t h e  r e l a t ion  between tempera- 
t u r e  and burning veloci ty  a t  pressures and equivalence r a t i o s  of i n t e re s t  was 
determined with thermocouples f o r  t h e  somewhat cooler ethylene flames. 
temperatures f o r  a few of t h e  cooler acetylene flames were measured by thermo- 
couple. Finally, t h e  temperatures of t h e  r e s t  of t h e  acetylene flames were esti- 
mated by assuming that t h e  dependence of temperature on burning velocity,  pres- 
sure, and equivalence r a t i o  was t h e  same f o r  both fuels.  
with thermocouples showed that t h e  temperature was insensi t ive t o  such changes 
i n  t h e  proportion of diluent as were ac tua l ly  encountered. 
made, then, f o r  such variation. Pressure ms measured and controlled as previ- 
ously described (ref. 5) .  

Then the 

Ekperimental checks 

mo correction was 

Gas analysis was done with a mass spectrometer, most species being analyzed 
direct ly .  
sampling l i n e  and estimated by atom balance. For samples f r m  very lean Hz-fJZO 
flames, which contained la rge  amounts of both IT0 and 02, t he re  was a s m a l l  peak 
at mass 46 due t o  oxidation of a small part  of t h e  NO t o  NO,. At t h e  beginning 
of a run, t h e  46 peak was absent, but it appeared shor t ly  afterward and in- 
creased with time. 
established that t h e  presence of t h e  46 peak did not measurably a f f ec t  t h e  very 
much la rger  30 or 32 peaks. Downstream of r i c h  hydrocarbon flames, a small 
amount of hydrocarbon was found, usually %H2, at  a maximum mole f rac t ion  of 
about 0.001. This decayed rapidly with distance. A small peak was found at 

Water and, i n  some cases, carbon dioxide (C02) were trapped out i n  t h e  

Repetition of points a t  t h e  beginning and end of a run 
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I 
mass 32, which represented t h e  presence of e i t h e r  02 or OH i n  t h e  burned gas, . 
which l ikewise decayed rapidly.  The o ther  more important products, H2, CO, and 
NO, remained constant f o r  res idence times i n  the  burned gas of severa l  m i l l i -  
seconds; hence, f o r  a l l  r i c h  flames, a s ing le  value served t o  charac te r ize  t h e  
NO yield.  

The range of experimental conditions covered was l jmi ted  somewhat by prob- 
l e m s  of temperature measurement and pumping capacity,  but  mainly by flame sta- 
b i l i t y  problems. Thus, a l l  r i c h  hydrocarbon flames tended t o  be unstable  at 
pressures much lower than 40 mil l imeters .  
maintained i f  t he  equivalence r a t i o  became too  high. 
and C2H4 with N20 could not  b e  maintained below 1850° or 1900' K, whereas cor re-  
sponding H2 flames remained s t a b l e  down t o  almost 1500' K .  Rather surpr i s ing ly ,  
very lean H2-N20 flames with no added d i luen t  showed extraordinary s t a b i l i t y  down 
t o  equivalence r a t i o s  of less  than 0.20. This may represent  t h e  f a c t  t h a t ,  under 
such conditions,  t he  f l a m e  i s  supported, i n  pa r t ,  by t h e  exothermic decomposition 
of N20. 
s t ruc ture  and became unstable.  Deta i l s  of experimental condi t ions,  along with 
t h e  NO yield,  a r e  shown i n  t a b l e  I f o r  a l l  new da ta .  

For a l l  r i c h  flames, s t a b i l i t y  w a s  not  
Rich flames of C2HZ and 

A t  an equivalence r a t i o  near 0.16, t hese  flames developed a c e l l u l a r  

Presentat  ion of Results 

A l l  NO y i e ld  r e su l t s ,  including those  previously reported i n  reference 5, 
are shown i n  f igu res  1 t o  3; y i e ld  i s  expressed as nNO/(nNZO) , t h e  number of 

moles of NO produced per  mole of NzO f e d  i n t o  t h e  flame, and i s  p l o t t e d  aga ins t  
t h e  rec iproca l  burned gas temperature i n  s u i t a b l e  co r re l a t ing  forms. The 
s c a t t e r  of t h e  da ta  amounts t o  about f10 percent (occasional ly  g r e a t e r )  and can 
be accounted f o r  i n  terms of temperature inconsistency ( t25 '  K ) ,  random e r ro r s  
of sampling and ana lys i s  (*5 t o  f10 percent),  and, as i s  discussed later, t h e  
empirical  nature  of t h e  cor re la t ions .  Furthermore, because of t h e  approximate 
nature  of t h e  r ad ia t ion  correct ion,  a cons is ten t  temperature e r ro r  of about 
50' K i s  l i ke ly .  
measurements reported i n  reference 5 are cons i s t en t ly  16 percent higher than t h e  
corresponding values  given i n  t h i s  report .  The d i f fe rence  represents  a con- 
s i s t e n t  e r r o r  i n  reference 5 i n  t h e  mass-spectrometer ca l ib ra t ions  for NO and 
N20. The corrected rate expressions based on reca lcu la t ion  of t h e  N20 decay 

0 

It should be  noted t h a t  t h e  NO y i e l d  values  represent ing 

~ measurements of reference 5 are 

I- (where R i s  t h e  universa l  gas constant and T i s  temperature) which corre-  
sponds t o  t h e  reac t ion  

N 0 + 0 + 2NO 
2 
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and 
30,000 

( l i t e rs / (mole)  ( see ) )  - RT k3 = 9X10l2 e 

which corresponds approximately t o  t h e  reac t  ion 

N20 + 0 + Nz + O2 ( 3 )  

The level of t h e  rate constants remains about the same as reported i n  refer- 
ence 5, and a l l  conclusions drawn on the basis  of t h e  earlier corre la t ions  re- 
main va l id .  

RESULTS AND DISCUSSION 

Rich Flames 

Description of r e s u l t s .  - Data f o r  r i c h  hydrogen flames are shown i n  f i g -  

The y i e l d  of BO does increase with temperature at a r a t e  cor- 
ure  1. 
r a t i o  i s  found. 
responding t o  an energy of about 34 k i loca lor ies  per  mole. 
of t h e  NO y i e ld  estimated from reference 2 i s  also shown and i s  i n  s a t i s f a c t o r y  
agreement with present r e su l t s .  
discussed i n  reference 5. 

With ni t rogen di luent ,  no s ign i f i can t  e f f ec t  of pressure o r  equivalence 

An approximate value 

These data have a l ready  been presented and 

For t h e  da ta  with COz diluent ,  it was found t h a t  par t  of t h e  COz i n i t i a l l y  
present was  converted t o  CO on passage through the flame. Thus, it appears t h a t  
C02 a c t s  i n  a manner more complicated t h a n  that of a simple di luent .  I n  fact, a 
spec i f i c  chemical e f f ec t  is  indicated,  as shown by f igu re  1. Thus, t h e  NO y i e l d  
values are general ly  higher with C02 d i lu t ion  than w i t h  "2. There i s  a pressure 
e f fec t .  Most of t h e  da ta  were  obtained f o r  an equivalence r a t i o  Q of 1.21; 
however, a f e w  da ta  points  w e r e  obtained at  other equivalence r a t io s .  Examina- 
t i o n  of t ab l e  I and figure 1 shows that t h e r e  is an e f f e c t  of equivalence r a t io ,  
t h e  NO y i e ld  decreasing with increasing cp at constant pressure. Final ly ,  the 
temperature dependence of t h e  IT0 y ie ld  at constant pressure seems t o  be  much 
less with COz di luent  than with IT2. 

A s a t i s f a c t o r y  empirical  cor re la t ion  of the data  with COz d i l u t i o n  was 
P ~ / ~ ( , P  - 1)'/', where P i s  total pressure. found i n  terms of 

Tha t  funct ion i s  shown p lo t t ed  against  t h e  reciprocal  temperature i n  f igu re  2. 
I ts  temperature dependence corresponds t o  about 8 k i loca lo r i e s  per mole. 

It might be  noted that ana lys is  of t h e  burned gas indicated that equi l ib-  
rium among COz, H2, CO, and HzO was approximately a t ta ined .  
cu la t ions  t o  t h i s  e f f ec t  w e r e  supported by t h e  observation that t h e  concentra- 
t i o n  of ne i the r  CO nor % showed any change wlth d is tance  i n  t h e  burned gas. 
Thus, there was no opportunity t o  measure a r a t e  of approach t o  equilibrium, 

Thermodynamic cal-  
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as was done, f o r  instance, i n  reference 7. 

For hydrocarbon-N~O-N2 flames, t h e  NO y i e l d  i s  roughly independent of 
pressure and primary f u e l  but decreases with i n i t i a l  equivalence r a t io .  A satis- 

factory empirical correlat ion was found between the product [../( nN 2 0 )o, l ( T  - 
and reciprocal temperature. 
near ly  the  same as f o r  hydrogen-N20-N2 flames. 

The change i n  NO y ie ld  with temperature was very 
Results are shown i n  f igure  3. 

Discussion of results f o r  hydrogen and hydrocarbon flames. - The f a c t  t h a t  
t h e  NO yield changes regular ly  with burned gas temperature suggests that one (or 
both) of t w o  types of process i s  important. 
equilibrium involving NO may be  established within and downstream of t h e  flame. 
Second, reactions producing NO may compete with react ions decomposing N20, t h e  
e f f ec t s  of this competition on the  change i n  NO yield with temperature repre- 
senting t h e  e f f ec t s  of differences i n  overall ac t iva t ion  energies. 
flames, it has not been possible  t o  conceive of a reaction involving No whose 
equi l ibrat ion would begin t o  explain t h e  results found. 
these  resu l t s  w i l l  be l imited t o  consideration of t h e  second type of process. 

F i r s t ,  a temperature-sensitive 

For r i c h  

Thus, discussion of 

Proper in te rpre ta t ion  of t h e  r e s u l t s  requires  that a l l  s ign i f icant  fea tures  
of t h e  data be  explained i n  a mutually consistent fashion. 
flames, the r e s u l t s  suggest ra ther  unequivocally t h a t  NO i s  formed by react ion 
of N20 with oxygen atoms, according t o  react ion (1). 
yie ld  decreases markedly with increasing equivalence ra t io ,  as would be  expected 
if  t h e  formation of NO depended on t h e  ava i lab le  concentration of oxygen atoms. 
Also, it i s  observed that t h e  y ie ld  of No from H2 flames i s  considerably grea te r  
than the y i e ld  from t h e  leanest  of t h e  hydrocarbon flames. 
with the  formation of NO by reaction (l), i n  a l l  cases s ince unsaturated hydro- 
carbons react  very much more rap id ly  with oxygen atms than  does % (ref. 8). 

For hydrocarbon 

It i s  noted that t h e  NO 

This i s  consistent 

On the other hand, ce r t a in  apparent inconsistencies are found between t h e  
r e su l t s  f o r  % and f o r  hydrocarbons. 
shows no systematic change with equivalence r a t i o  suggests s t rongly that No i s  
formed by react ion of N20 with H ( react ion (2 ) )  rather than react ion of N20 
with 0 (reaction (1)). 
t h e  higher of two estimated values f o r  the rate constant of react ion (1) 
(ref. 1) i s  about f i v e  times smaller than the ra ther  well  established rate 
constant f o r  t h e  reaction of H2 with 0 ( r e f .  9 ) .  
t h a t  NO i s  formed by d i f fe ren t  reactions i n  %-NZO-N2 and hydrocarbon-N~O-N2 
flames. 
w i t h  NE diluent,  however, seems t o  suggest that NO is  formed by t h e  same re- 
act ion in both cases. 

The f a c t  that t h e  NO y ie ld  from H2 flames 

This conclusion i s  fu r the r  supported by t h e  f a c t  t h a t  

Thus, it might be concluded 

The f a c t  t h a t  t h e  temperature e f fec t  i s  similar f o r  both types of f u e l  

These e f f ec t s  can be discussed more quant i ta t ive ly  if t h e  r e s u l t s  are ana- 
lyzed i n  terms of t h e  Zeldovich-Frank-Kamentsky-Semenov theory (ref. 10) (subse- 
quently referred t o  as t h e  Semenov theory).  
t o  t h a t  used by Rozlovskii (ref.  11) i n  connection with the  N20 decomposition 
flame. 

Such a treatment would be similar 

With diffusion neglected, t he  n i t r i c  oxide y ie ld  may be wr i t ten  

6 



where t i s  time, d2 i s  an increment of flame thickness,  vo i s  t h e  normal 
burning v e l o c i t y  of t h e  unburned mixture, and the  quan t i t i e s  i n  brackets  a r e  
volume concentrations.  Equation (4) can be integrated subject t o  t h e  following 
assumptions: 

(1) Chemical reac t ion  takes  place only at o r  very near t h e  f i n a l  burned gas 
temperature Tb. This assumption i s  a par t  of t h e  Semenov theory.  

i s  constant through t h e  flame. ( 2 )  The rate of NO increase d[NO]/dt 
This simplifying assumption i s  made i n  Roz lwsk i i ' s  treatment ( ref .  11). 

(3) The limits of in tegra t ion  i n  equation (4) def ine  t h e  flame thickness  2 
such that 

Using t h e s e  assumptions and in tegra t ing  r e su l t  i n  
Y 

where t h e  s t a r r e d  der iva t ive  represents  a constant, e f f e c t i v e  value f o r  t h e  
flame. The quant i ty  2/vo i s  proport ional  t o  a reac t ion  time associated with 
t h e  flame a s  a whole (ref. 12);  therefore ,  t h e  NO y i e ld  can be expressed as 

It may be  assumed that T i s  t h e  reac t ion  time assoc ia ted  with t h e  reac t ion  

which, i n  t h e  absence of NO formation, would account f o r  a l l  t h e  N20 decay 
through t h e  flame (ref. 2) .  For r i c h  flames 

The predicted behavior of equation (7)  may now be compared depending on 
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whether reac t ion  (1) or (2) i s  assumed as t h e  source of NO. It should be noted. 
t h a t  both reac t ions  pred ic t  d i r e c t l y  t h a t  t h e  NO y i e l d  should be independent of 
pressure. Thus, [NzO], a P, where P i s  t o t a l  pressure.  Since both  reac t ions  

(1) and (2) are second order, (d[NO]/dt) P i n  e i t h e r  case. F ina l ly ,  s ince  
t h e  ove ra l l  r eac t ion  (8) i s  second order, z 
zero pressure dependence i s  predicted, as w a s  observed. 

* 2 

P'l ( r e f .  13).  Thus, a n  o v e r a l l  

With regard t o  t h e  e f f e c t  of equivalence r a t i o ,  t h e  s i t u a t i o n  i s  more com- 
p l ica ted .  
case 

It may f irst  be assumed t h a t  NO i s  formed by reac t ion  (l), i n  which 

If t h e  oxygen atoms a r e  assumed t o  be i n  a steady state, being formed by 

N 2 0 + M - + N z + O + M  (10) 

(11) 

(where M i s  any species present )  and destroyed by reac t ions  (l), (3),  and 

H2 + 0 -+ H + OH 

t h e  equation 

i s  obtained, where a l l  s t a r r e d  q u a n t i t i e s  are e f f e c t i v e  valuss i n  t h e  flame zone. 
The value of k l l  i s  wel l  known ( r e f .  9 ) .  When expressions f o r  kl and k3 
mentioned previously a r e  used ( t h a t  is, a value of 
sampling measurements), it can be seen t h a t  (kl + k3) and 

i n  t h e  r a t i o  6:l. Thus, if h201* and [H21* a r e  not t o o  d i f f e r e n t  ( t h a t  is, 
t h e  range of equivalence r a t i o s  i s  not t o o  l a rge ) ,  d[NO]*/dt 
weakly on hydrogen concegtration, and, from t h e  Semenov theory, 
( 1/[N201 ) (d[NO]/dt )* w i l l  be s i m i l a r l y  independent of equivalence r a t i o .  

It i s  eas i ly  shown, however, t h a t ,  if t h e  main source of heat production i n  t h e  
flame i s  reac t ion  ( a ) ,  z a ([HI*)-'. The v a r i a t i o n  of [HI* with equivalence 
r a t i o  is  not p rec i se ly  known. Nevertheless, it i s  q u i t e  un l ike ly  t h a t  [HI* i s  
independent of cp. Thus, it i s  pred ic ted  t h a t  t h e  NO y i e ld  depends on 0.  It 
should be noted t h a t ,  if a steady s t a t e  i s  not assumed f o r  oxygen atoms, an even 
stronger dependence of NO y i e l d  on cp i s  predicted.  On t h e  o ther  hand, if it 
i s  assumed t h a t  NO i s  formed by reac t ion  (2), 

kl obtained fram flame 
kll are about 

w i l l  depend only 

0 
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In  t h i s  case, it i s  seen that t h e  NO yield does not depend on cp, as is observed 
Thus, as concluded i n t u i t i v e l y  i n  reference 5, t h e  equivalence r a t i o  e f f e c t  
favors reac t ion  (2 )  over react ion (1). 

The r e s u l t s  with C02 d i l u t i o n  suggest that ,  while much of t h e  C02 that re- 
a c t s  i n  t h e  flame does so by way of t h e  reaction 

C02 + H + CO +- OH (14) 

an important f r ac t ion  u l t imate ly  undergoes thermal d issoc ia t ion  t o  give oxygen 
atoms. The oxygen atms are formed i n  a suf f ic ien t  quant i ty  that t h e  main re- 
ac t ion  forming NO becomes react ion (1) instead of (2) .  A simple equilibrium 
ca lcu la t ion  shows that oxygen atoms must exceed t h e i r  equilibrium concentration 
by many orders of magnitude t o  have a noticeable e f f e c t  on t h e  NO yield.  Thus, 
t h e  a c t u a l  mechanism of oxygen atm formation is almost ce r t a in ly  q u i t e  c m p l i -  
cated. 

The mechanism proposed f o r  m0 formation i n  r i c h  €12-N20-C02 flames i s  obvi- 
ously cons is ten t  with the observed e f f e c t  of equivalence r a t i o .  It i s  a l s o  
cons is ten t  with t h e  pressure e f f ec t  since, f o r  a nonequilibrium system, t h e  
concentration of ac t ive  species can increase s t rongly with decreasing pressure.  
Final ly ,  canparison of temperature e f f e c t s  shows t h a t  t h e  main react ion forming 
IlO wi th  N2 d i l u t i o n  i s  not t h e  same as with C02 di lu t ion .  
later, a r e l a t i v e l y  small rate of increase of NO yield with temperature i s  
c h a r a c t e r i s t i c  of s i t ua t ions  where Ro i s  formed i n  % flames by reac t ion  (1). 
Thus, -results with C02 corroborate t h e  idea that, with an i n e r t  di luent ,  m0 i n  
r i c h  %-N20 flames is formed by reac t ion  (2 ) .  It can be concluded, then, t h a t  
t h e  s i m i l a r i t y  i n  temperature e f f e c t s  between m0 y i e l d  da ta  from %-N2O-N2 and 
hydrocarbon-N20-N2 flames is, i n  fac t ,  coincidental  and that t h e  reac t  ions 
mainly responsible  f o r  m0 formation are d i f fe ren t  i n  hydrogen and hydrocarbon 
flames. 

As will be shown 

Further  discussion of n i t r i c  oxide y ie ld  results from hydrocarbon flames. - 
As noted previously, the I?O y ie ld  from C2H4 and C2% flames decreased s t rongly 
with increasing equivalence r a t i o .  This s e a s  t o  ind ica te  t h a t  NO is formed 
almost exclusively by reac t ion  (1). 
must be unimportant, reac t ion  (8) 
with reac t ion  (2), i s  a l s o  unimportant. 
does not cont r ibu te  much t o  N20 decay i s  offered by comparison of da ta  for C2H2 
and CzH4 flames. Thus, it was found that t h e  mole f r a c t i o n  of H2 i n  the burned 
gas frm ethylene flames was more than twice as grea t  as from acetylene flames. 
The NO y i e l d  da ta  f o r  t h e  two fuels roughly coincided, however. It seems 
reasonable t o  expect t h a t  the hydrogen atom concentration i n  t h e  flame should 
vary d i r e c t l y  with t h e  amount of H2 i n  t h e  burned gas. By def ini t ion,  t h e  m0 
y i e l d  represents  t h e  number of moles of NO formed per  mole of N20 consumed. 
Thus, it can be infer red  t h a t  t h e  r a t e  of lV,O consumption i n  t h e  flame was not 
measurably a f fec ted  by a change i n  hydrogen atom concentration corresponding t o  

Then, s i n c e  react ion (2)  (U20 + H -+ NO+ TI") 
(NZO + H -, Nz + OH), which occurs i n  p a r a l l e l  

Further evidence t h a t  reac t ion  (8) 
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t h e  observed change i n  5 l e v e l  i n  t h e  burned gas. 
react ion (8) i s  unimportant i n  hydrocarbon-R20 flames. 
f o r  N20 consumption would seem t o  be reac t ions  of t h e  type  

This seems t o  ind ica te  t h a t  
The simplest l i k e l y  pa th  

R20 + R + N2 + RO (15) 

where R i s  a monovalent hydrocarbon rad ica l .  If reac t ion  (15) i s  important i n  
the presence of even a r e l a t i v e l y  small concentration of hydrogen atoms, i t s  
ac t iva t ion  energy cannot be much higher than t h a t  of reac t ion  (8). Thus, con- 
sumption of hydrocarbon by t h e  sequence of reac t ions  

IV20 + M + N2 + 0 + M (10 1 

C2H4(C2H2) + 0 --* products (16) 

i s  probably not important s ince  reac t ion  (10) involves an ac t iva t ion  energy of 
59 k i loca lor ies  a t  low pressures. 

Further evidence may be offered t o  support t h e  idea tha t ,  i n  r i c h  
hydrocarbon-N20 flames, t h e  concentration of hydrogen atoms i s  a c t u a l l y  negl i -  
g i b l y  small (from the standpoint of flame reac t ion  rates) compared with H2-MzO 
flames. Thus, i n  t h e  inves t iga t ion  of reference 14, it was found t h a t ,  down- 
stream of r i c h  H2-02-diluent flames, t h e  concentration of hydrogn atoms exceeded 
equilibrium by several orders  of magnitude. Downstream of corresponding hydro- 
carbon flames, however, t h e  concentration of hydrogen atums found was t h e  equi- 
l ibr ium value, within experimental e r ror .  

Lean Flames 

Description of resu l t s .  - The new IVO y i e l d  da ta  f o r  H2-N,0 di luent  flames 
a r e  shown i n  f i g u r e  3 along with t h e  data previously presented i n  reference 5, 
which have been corrected, as discussed above. It can be seen from f i g u r e  3 and 
t a b l e  I that a l l  y ie ld  values at  constant pressure are cor re la ted  with the 
square root of t h e  downstream oxygen concentration f o r  an o v e r a l l  va r i a t ion  i n  
oxygen concentration of about a f a c t o r  of 10. As noted previously, the  l e v e l s  
of NO concentration are genera l ly  much higher than f o r  r i c h  flames. The corre- 
l a t i n g  y ie ld  function increases  subs t an t i a l ly  with decreasing pressure,  t h e  
change in NO y i e ld  itself with pressure being i n  the same di rec t ion ,  but much 
smaller. A point computed from recent  sampling da ta  of reference 9 f o r  an 
HZ-N20-air flame a t  a pressure of 20 millimeters i s  i n  reasonable agreement. 
The temperature dependence of t h e  NO y ie ld  i s  independent of pressure, d i luent ,  
and oxygen concentration. It amounts t o  about 14 ki loca lor ies ,  a value sub- 
s t a n t i a l l y  less than f o r  r i c h  flames with an i n e r t  di luent ,  but  o n l y ' s l i g h t l y  
grea te r  than t h e  value found f o r  r i c h  H2-N20-C02 flames. 

Discussion of r e su l t s .  - The cor re l a t ion  with oxygen Concentration, even 
f o r  t h e  very lean flames, suggests that, i n  a general  way, t h e  NO y i e l d  i s  pro- 
port ional  t o  t h e  oxygen atom concentration i n  t h e  flame. 
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In  lean  flames, t h e r e  are two possible  sources of oxygen atoms, reac- 
t i o n  (10) (N20 + M -, N2 + 0 + M) and reversible  d issoc ia t ion  of oxygen molecules 

0 2 + M = 2 0 + M  (17) 

produced by reac t ion  (3) (R20 f 0 --* I?, + 0 2 ) .  The nature  of the cor re la t ion  ob- 
served suggests t h a t  t h e  contr ibut ion of reaction (10) i s  small. 
assumed that i n  t h e  p a r t  of t h e  flame where I?O is  produced t h e  change i n  concen- 
t r a t i o n  of oxygen atoms with dis tance i s  small, and i f  reac t ion  (17 )  i s  at  or 
near equilibrium, 

If it i s  

where K i s  a constant.  Actually, strong evidence e x i s t s  (refs. 1 and 5)  that, 
downstream of l ean  H2-N2O-diluent flames, t h e  concentration of oxygen atoms is 
i n  great  excess of equilibrium, s o  t h a t  K i s  probably not a t r u e  equilibrium 
constant. Thus, equation ( 1 7 )  represents  t h e  ove ra l l  r e s u l t  of a complex pro- 
cess, analogous t o  t h e  d issoc ia t ion  of C% t o  produce oxygen atoms, which was 
discussed earlier i n  connection with r i c h  %-N20-C02 flames. 

The rate of formation of NO i n  t h e  flame by react ion (1) can be wr i t ten  8 s  

(..* = 2klK(rOZ1) * 1/2rI?201* 

s ince  reac t ion  (2 )  is  not l i k e l y  t o  be important i n  lean flames. 
equals t h e  value measured downstream of t h e  flame, 

If [021* 

This equation is  analogous t o  equation (4) f o r  r i c h  flames. 
argument as m s  used f o r  r i c h  flames, it can be shown tha t ,  f o r  lean flames, 

By t h e  ssme kind of 

nno/(nN20) 
w i l l  vary inversely with pressure.  This i s  f a i r l y  c lose  

0 

t o  w h t  i s  observed. Equation (20) might a l s o  be used t o  predict  t h e  observed 
f a c t  that t h e  temperature dependence of t h e  "3 y ie ld  i s  independent of equiva- 
lence r a t i o  over a very w i d e  range. A d i f f i c u l t y  a r i s e s ,  however, since, for 
very lean flames, reac t ion  (3) may contr ibute  s ign i f i can t ly  t o  heat release 
through t h e  flame as w e l l  as reac t ion  (8) (NZO + H -+ N2 + OH). Thus, i n  oriier 
t o  explain t h e  r e su l t ,  it m i s t  be cmcluded e i ther  t h a t  reac t ion  (8) continues 
t o  deternine t h e  flame proper t ies  %t very l e a n  equivalence r a t i o s  or  that t h e  
ac t iva t ion  energy f o r  reac t ion  ( 3 ) ,  wbich would be important i n  very lean  
flames, i s  not very d i f f e ren t  from that f o r  react ion (8) .  In e i t h e r  case, t h e  
ac t iva t ion  energy of t h e  cont ro l l ing  react ion would vary s l igh t ly ,  at most, 
with change i n  equivalence r a t i o .  The lat ter of t h e  two p o s s i b i l i t i e s  i s  con- 
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s i s t e n t  with conclusions reached i n  reference 5, regarding t h e  t r u e  values of 
Eg and El, bxt, i n  view of t h e  complicated nature of t h e  flame reactions, t h e  
f i r s t  poss ib i l i t y  cannot be excluded. 

The f a c t  t h a t  t he  temperature dependence on t h e  NO yield i s  so  very d i f -  
ferent for lean and r i c h  flames with i n e r t  di luents  suggests examination of t h e  
poss ib i l i ty  that ,  downstream of lean flames, NO i s  maintained by an equilibrium 
of some so r t .  The most l i k e l y  p o s s i b i l i t y  would be 

(21)  
-+ 

N2 + O2 + 2NO 

This equilibrium i s  consistent with t h e  dependence of NO yield on [0211/2 t h a t  
i s  observed. Equilibration of reaction ( 2 1 )  predicts  t h a t  t he  NO y ie ld  function 
w i l l  vary with pressure as P-1/2 and w i l l  show a change with temperature cor- 
responding t o  22 kilocalories.  This i s  not t o o  d i f f e ren t  from what i s  observed. 
The observed concentration product f o r  reaction ( 2 1 )  is, however, greater  than 

10-1 near 1800° K, whereas t h e  value of t h e  equilibrium constant i s  about lo-'. 
Furthermore, with argon as t h e  diluent, it i s  possible t o  vary t h e  N2 concen- 
t r a t i o n  in  the  burned gas by a factor  of j u s t  over 2 . 5 .  In s p i t e  of t h e  large 
s c a t t e r  of t h e  data, t h e  e f f ec t  of t h i s  change should be apparent if  reac- 
t i o n  (21) i s  equilibrated. Actually, no s ignif icant  e f f ec t  i s  found. Thus, it 
seems f a i r l y  ce r t a in  t h a t  t h e  equilibrium i s  not maintained. 

I n  general, it can be concluded t h a t ,  f o r  lean flames as well  as r ich ,  exam- 
ination of t h e  NO yield Over a range of experimental cases gives some informa- 
t i o n  on chemical processes within t h e  flame. 

SUMMARY OF RESULTS 

The n i t r i c  oxide (NO) yield was measured from lean and r i c h  premixed flames 
of hydrogen, ethylene, and acetylene on a cooled porous burner. Various di lu-  
ents  were used. The following r e s u l t s  were obtained: 

1. The var ia t ion of NO yield with equivalence r a t i o  suggested t h a t  i n  hydro- 
gen (HZ) - nitrous oxide ( N 2 0 )  flames with i n e r t  di luents  NO w a s  formed by t h e  
r eac t  ion 

N20 + H -+ NO I- NR 

whereas i n  corresponding hydrocarbon-N20-nitrogen and hydrogen - N,O - carbon 
dioxide flames NO was formed mainly by 

m20 -k 0 -+ 2NO 

2. The addition of carbon dioxide t o  a r i c h  Hz-NzO mixture gave a flame i n  
which oxygen atoms appeared t o  exceed t h e i r  equilibrium concentration by many 
orders of magnitude. 
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3. Since t h e  NO yie ld  from ethylene flames was t h e  same as from corre- 
sponding acetylene flames, it appears that t h e  react ion 

i s  unimportant i n  hydrocarbon-N20 flames, and t h a t  N20 decay takes  place through 
react  ion of N20 with monovalent hydrocarbon radicals. 

4. The var ia t ion  of NO y ie ld  with pressure, oxygen concentration, and 
i n i t i a l  equivalence rat i o  for lean H2-II20-diluent flames indicated t h a t  t h e  con- 
t r i b u t i o n  of thermal decomposition of N20 t o  the  overa l l  flame react ion was 
s m a l l .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, February 15, 1963 

REFERENCES 

1. Fenimore, C. P., and Jones, G, W,: Determination of Oxygen Atoms i n  Lean, 
F la t ,  Premixed Flames by Reaction with Nitrous Oxide. Jour. Phys. (!hem., 
vol. 62, no. 2, Feb. 1958, pp. 178-183. 

2. Fenimore, C. P., and Jones, G. W. : R a t e  of Reaction i n  Hydrogen, Nitrous 
Oxide and i n  Some Other Flames. Jour. Fhys. Chem., vol. 63, no. 7, 
July 20, 1959, pp. 1154-1158. 

3. Fenimore, C. P., and Jones, G, W.: I f i t r ic  Oxide Decomposition at  2200 - 
2400' K. Jour.  Phys. Chem., vol. 61, no. 5, May 27, 1957, pp. 654-657. 

4. Kaufman, F., and Decker, L. J, : High-Temperature Gas Kinetics with t h e  U s e  
of t h e  Logarithmic Photometer. 
bustion, The Wi l l i ams  & Wilkins Co., 1962, pp. 133-139. 

Eighth Symposium (Internat ional)  on Com- 

5. Fine, Burton D.: Sampling Studies Downstream of Hydrogen - Nitrous Oxide - 
Diluent Flames. NASA TIT D-1528, 1962. 

6. Kaskan, W. E.: The Cependence of Flame Temperature on Mass Burning Velocity. 
Sixth Symposium (Internat ional)  on Combustion, Reinhold Pub. Corp., 1957, 
pp. 134-143. 

7. Fenimore, C. P., and Jones, G. W. : The Reaction of Hydrogen A t o m s  with Car- 
bon Dioxide at 1200-1350° K. Jour. Phys. Chem., vol. 62, no. 12, Dee. 
1958, pp. 1578-1581. 

8. Kauf'man, Frederick: Reactions of Oxygen A t o m s .  Progress i n  Reaction 
Kinetics, vol. I, G. Porter, ed., Pergamon Press, 1961, pp. 3-40. 

13 



9. Fenimore, C. P., and Jones, G. W. : Rate of Reaction, 0 + H2 + OH + H, i n  
Flames. Jour. Phys. Chem., vol. 65, no. 6, June 26, 1961, pp. 993-995. 

10. Evans, Marjorie W. : Current Theoret ical  Concepts of Steady-State Flame 
Propagation. Tech. Rep. 27, Pro j .  Squid, Princeton Univ., 1952. 

11. Rozlovskii, A. I.: Formation of Nitrogen Oxide i n  DecomposTtion Flame of 
Nitrous Oxide. Kinetika i Kata l iz ,  vol. 2, 1961, pp. 809-815. ( I n  
Rus s i a n  . ) 

1 2 .  Fine, Burton D. : A Study of Oxidation of Hydrogen Based on Flashback of 
Hydrogen-Oxygen-Nitrogen Burner Flames. NASA MEMO 12-23-583, 1959. 

13. Spalding, D. B. : Some Fundamentals of Combustion. Academic Press, Tnc., 
1953, p. 190. 

14. Fenimore, C. P., and Jones, G. W,: Determination of Hydrogen Atoms i n  Rich, 
Flat ,  Premixed Flames by Reaction w i t h  Heavy Water. Jour. Phys. Chem., 
vol. 62, no. 6, June 26, 1958, pp. 693-697. 

14 



TABLE I. - N I T R I C  OXIDE YIELD DATA 

(a) Rich hydrocarbon - nit rous oxide - nitrogen flames 

Fuel Initial 
burning 

velocity, 
VO , 

cm/sec 

Equiva- 
lence 
ratio,  

cp 

Burned 
gas 

Jempera- 
ture ,  

lili tial 
diluent- 

f u e l  
r a t io ,  

Nitr ic  
oxide 
y i e ld  

nNO 

f’unction, 

(qyzo)O 
( c p  - 1) 

Pressure, 
p, 

thyl.  
ene 

44 2090 
2085 
2085 
2080 
2020 

23-8 
25.1 
25.3 
30. 4 
25.2 

1.12 
1.41 
1.51 
1-33 
1-32 

4.83 
4.45 
4.02 
4.65 
4.65 

0.0031 
.0028 
.0032 
.0m3 . 0034 

88 2 060 
2000 
1995 
1980 
1950 
1940 
1920 

18.7 
15.2 
12.5 
12.6 
13.0 
12 -6 
10.7 

1.33 
1-33 
1.51 
1.51 
1.12 
1.32 
1.12 

4.65 
4.65 
4.02 
4.09 
5.00 
4.65 
5.00 

0.0030 
.0025 
.0025 
.0026 
.0025 
.0023 
-0013 

2230 
2220 
2 215 
2180 
2170 
2140 
2 080 

1.29 
1.54 
1.43 
1.16 
1.29 
1.16 
1-32 

5.12 
5.15 
4.85 
4.41 
5.15 
4.35 
5.30 

0.0086 
.0068 
.0062 
-0055 
.0070 
0054 

0 0054 

cety 
lene 

27.8 
23.1 
27.2 
24.6 
24.7 
21.4 
19.3 

13.9 
13.6 
12.3 

44 

88 2050 
2 010 
2000 

1.29 
1.43 
1.29 

5.12 
4.85 
5.15 

0.0042 
.0030 
-0032 
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TABLE I. - Continued. N I T R I C  OXIDE YIELD DATA 

(b)  Rich hydrogen - n i t rous  oxide - carbon dioxide flames 

Pres sur e ,  
p, 
Hg 

27 

44 

8% 

Burned 
gas 

tempera- 
ture, 

2 

1800 
1740 
1640 
1690 

1760 
1740 
1705 
1640 
1718 
1632 
1700 
1773 
1575 
1570 

1675 
1665 
1590 
1585 

16 

I n i t i a l  
burning 

re loc i  t y ,  
vO) 

cm/sec 

57.8 
48.5 
33.3 
40.8 

35.5 
39.0 
27.0 
25.0 
29.8 
29.0 
28.2 
34.3 
20.4 
27.9 

21.6 
17.8 
14.9 
13.5 

I n i t i a l  
f u e l  - 
nitrous 
oxide 
r a t i o ,  

0 

1.21 

1 
1.21 

1 
1.43 
1.10 
1.10 
1.21 
1.44 

1 .21  I 

I n i t i a l  
d i luen t  - 

f u e l  
r a t i o ,  

0.97 

i 
1.54 

.97 

.77 

.97 

.97 

.82 
1.06 
1.06 

.97 

.82 

1.54 
* 97 
.97 
.97 

N i t r i c  oxide 
y i e ld  function, 

a t m  1/2 

0.00317 
.00305 
.00232 
.00293 

0.00318 
.00329 
.00278 
.00293 
.00341 
.00294 
.00292 
.00368 
.00263 
.00248 

0.00326 
.00248 
.0273 
.0294 
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5. 

0 22 
- 0 d 44 

0 aa 
d 90 

d 210 
n 18 0 

L 
-Open sjmbols denote  n i t r o g e n  d i l u t i o n  - 

and i n i t i a l  hydrogen - n i t r o u s  oxide  
r a t i o s  between 0.58 and 0.85 

S o l i d  synbols denote  a i r  d i l u t i o n  
H a l f - s o l i d  symbols denote  a rgon  d i l c t i o n  
Tai led  s)m3bols denote  no d i l u e n t  and 

i n i t i a l  hydrogen - n i t r o u s  oxide  
r a t i o s  n e a r  0 .2  

R e c i p r o c a l  t e n p e r a t u r e ,  1 /T ,  OK 

F i g u r e  4. - Nitr ic  o x i d e  y i e l d  from l e a n  hydrogen - n i t r o u s  oxide  - d f l u e n t  f lames .  
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